STEREOSELECTIVE FORMATION OF SILACYCLOPENTANES BY THE REACTION OF SILACYCLOBUTANE WITH LITHIUM CARBENOIDS

Kozo Matsumoto, Koichiro Oshima, * and Kiitiro Utimoto*

Department of Industrial Chemistry, Faculty of Engineering,

Kyoto University, Sakyo-ku, Kyoto 606, Japan

Summary: An addition of lithium diisopropylamide to a solution of 1,1-dimethyl-1-silacyclobutane and diiodomethane provided 1,1-dimethyl-2-iodo-1-silacyclopentane in good yield.

Dichlorocarbene 1 from PhHgCCl $_2$ Br or siglet methylene $(^1\text{CH}_2)^2$ generated by the photolysis of ketene reacts with silacyclobutane to give a mixture of a ring insertion product and a -C-H insertion product. Here we wish to report that treatment of silacyclobutane with lithium carbenoids provides silacyclopentanes exclusively with high stereoselectivity.

Butyllithium (1.6 M in hexane, 12.5 ml, 20 mmol) was added to a solution of diisopropylamine (2.0 g, 20 mmol) in THF (20 ml) at 0 °C. The resulting solution of lithium diisopropylamide was added dropwise to a solution of 1,1-dimethylsilacyclobutane (1a, 1.5 g, 15 mmol) and diiodomethane (5.4 g, 20 mmol) in THF (30 ml) over 30 min by syringe pump at -78 °C under an argon atmosphere. The resulting mixture was stirred at -78 °C for another 30 min after completion of the addition. Then cold bath was removed and the reaction mixture was allowed to come to room temperature. Workup (ethyl acetate, sat. NH₄Cl) followed by purification by silica-gel column chromatography gave 1,1-dimethyl-2-iodo-1-silacyclopentane (3a, 3 3.0 g) in 83% yield.

The results are shown in Table 1. Not only dihalomethane but also benzyl bromide and iodomethyltrimethylsilane provided the corresponding 2-phenyl- and 2-trimethylsilyl-1-silacyclopentane in good yields upon treatment with lithium diisopropylamide in the presence of silacyclobutane. The substituents on silicon did not affect the reaction pathway. Thus, 1,1-diphenyl-, 1,1-dibutyl-, and 1,1-dihexynyl-1-

Table 1. Reaction between silacyclobutane and lithium carbenoidsa

	Silacyclobutane 1		Carbenoid	2	Product 3
Entry	R	R ¹	R^2	x	Y(%)
1	Me	Н	I	I	83
2	Me	H	Br	Br	57
3	Me	Н	Cl	Cl	49
4	Me	n-Bu	I	I	59
5	Me	H	Ph	Br	61
6	Me	н	Me ₃ Si	I	56
7	Ph	н	I	I	72
8	Ph	Н	Br	Br	74
9	Ph	н	Cl	Cl	72
10	n-Bu	H	I	I	85
11	n-Bu	Н	Br	Br	79
12	n-BuC≣C	н	I	I	88

a) Silacyclobutane (1.5 mmol), dihalomethane (or benzyl bromide, iodomethyltrimethylsilane, 2.0 mmol), and lithium diisopropylamide (2.0 mmol) were employed.

silacyclobutane reacted easily with lithium carbenoids as well as 1,1-dimethyl-1-silacyclobutane.

Several silacyclobutanes having substituent on four-membered ring carbon have been prepared and treated with lithium carbenoids. The reaction of 1,1,3-trimethyl-1-silacyclobutane (4a, R = Me) with ${\rm CHI_2Li}$, ${\rm CHBr_2Li}$, or PhCHBrLi gave the corresponding 2,4-disubstituted 1-silacyclopentane (5 and 6) with high stereoselectivity. The ratios of cis and trans isomer (5:6) were ca. 9:1 except for the reaction between 4b and PhCHBrLi (Table 2). 4

Cleavage of two Si-C bonds occurred in the case of 1,1,2-trimethyl-1-silacyclobutane (7). For instance, treatment of 7 with iodomethyllithium provided a mixture of cis-2-iodo-1,1,3-trimethyl-1-silacyclopentane (8a) and 2-iodo-1,1,5-trimethyl-1-silacyclopentane (9a) (8a/9a = 42/58). Treatment of 8e with HBF₄ and $\rm H_2O_2$ gave the diol (1R*,2S*) PhCH(OH)CH(Me)CH₂CH₂OH as a single stereoisomer, which was

identical with the sample prepared by the reduction of cis- γ -phenyl- β -methyl- γ -butyrolactone^{5,6} (Table 3).

Table 2. Reaction of 3-methyl-1-silacyclobutane with lithium carbenoids

Table 3. Reaction of 2-methyl-1-silacyclobutane with lithium carbenoids

Benzosilacyclobutene $(10)^8$ afforded the corresponding silacyclopentene 11. In this case, one of C-Si bonds was cleaved selectively.

$$Si_{Me_2} + H C C I \longrightarrow Si_{Me_2} I I$$

References and Notes

D. Seyferth, R. Damrauer, and S. S. Washburne, <u>J. Am. Chem. Soc.</u>, 89, 1538 (1967);
 D. Seyferth, H.-M. Shih, J. Dubac, P. Mazerolles, and B.

- Serres, J. Organomet. Chem., 50, 39 (1973).
- H. M. Frey, R. Walsh, and I. M. Watts, J. Chem. Soc., Chem. Commun., 1989, 284.
- 3. 3a: Bp 73 °C (bath temp, 2 Torr); IR (neat) 2932, 1250, 1049, 840, 812, 783 cm⁻¹; ¹H NMR (CDCl₃) δ 0.11 (s, 3H), 0.32 (s, 3H), 0.60 (dd, J = 7.5, 7.5 Hz, 1H), 0.61 (dd, J = 7.0, 7.0 Hz, 1H), 1.48-1.73 (m, 1H), 1.68-2.16 (m, 3H), 3.18 (dd, J = 6.1, 6.1 Hz, 1H); ¹³C NMR (CDCl₃) δ -2.7, -2.5, 11.1, 13.0, 25.3, 39.6. Found: C, 29.96; H, 5.58%. Calcd for C₆H₁₃ISi: C, 30.00; H, 5.46%.
- 4. Assignments of the products were based on the examination of those $^1\mathrm{H}$ NMR spectra. All the trans isomers, 6a-6f exhibited the narrow signals for the protons (Ha) attached to carbon bearing R1 group at lower field than those for protons in cis isomers 5a-5f. chemical shifts of protons (H_a) for 5a-5f and 6a-6f are as follows. 5a: 2.91 (dd, J = 7.5, 12.5 Hz), 6a: 3.41 (dd, J = 3.0, 5.5 Hz); 5b: 3.45 (dd, J = 8.0, 12.0 Hz), 6b: 3.80 (dd, J = 2.5, 5.5 Hz); 5c: 2.36 (dd, J = 6.5, 13.0 Hz), 6c: 2.58 (dd, J = 8.0, 8.0 Hz); 5d: 3.44 (dd, J = 8.0, 8.0 Hz); 5d:J = 7.3, 13.0 Hz), 6d: 3.91 (dd, J = 3.5, 5.5 Hz); 5e: 3.71 (dd, J= 7.7, 12.5 Hz), 6e: 4.05 (dd, J = 2.3, 4.5 Hz); 5f: 3.02 (dd, J = 6.5, 14.0 Hz), 6f: 3.21 (dd, J = 8.0, 8.0 Hz). Further support for the assignment has been given by the following transformation of 5f and 6f into the corresponding 1,4-diol (HOCH2CH(Me)CH2CH(OH)Ph) by the action of ${\rm HBF_4}$ and ${\rm H_2O_2}$ according to the reported procedure.(K. Tamao, J. Syn. Org. Chem. Jpn., 46, 861 (1988); I. Fleming, R. Henning, and H. Plant, J. Chem. Soc., Chem. Commun., 1984, 29). diol (1R*,3R*) derived from 5f was identical with a sample prepared by the reduction (LiAlH₄) of $cis-\alpha$ -methyl- γ -phenyl- γ -butyrolactone (E. Nakamura, H. Oshino, and I. Kuwajima, J. Am. Chem. Soc., 108, 3745 (1986)). The other diol from 6f was identical with that generated from trans- α -methyl- γ -phenyl- γ -butyrolactone.
- H. Ochiai, T. Nishihara, Y. Tamaru, and Z. Yoshida, <u>J. Org. Chem.</u>,
 53, 1343 (1988).
- 6. Treatment of 9e with HBF_4 and H_2O_2 provided a 1,4-diol $PhCH(OH)CH_2CH_2CH(Me)OH^7$ as 2:1 stereoisomeric mixture.
- 7. C. Najera, M. Yus, and D. Seebach, <u>Helv</u>. <u>Chim</u>. <u>Acta</u>, **67**, 289 1984).
- 8. C. Eaborn, D. R. M. Walton, and M. Chan, <u>J. Organomet</u>. <u>Chem.</u>, **9**, 251 (1967).
- Financial support by the Ministry of Education, Science and Culture of Japan (Grant-in-Aid for Scientific Research #02650624) is acknowledged.